Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 174: 105873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417682

RESUMO

Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 µM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 µM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.


Assuntos
Apocynaceae , Alcaloides de Triptamina e Secologanina , Simulação de Acoplamento Molecular , alfa-Amilases , Estrutura Molecular , Alcaloides Indólicos , Compostos Fitoquímicos/farmacologia , Apocynaceae/química
2.
Fitoterapia ; 173: 105826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219842

RESUMO

Five undescribed lignans, cleiseberharnins A-D (1-4), cleiseberharside A (5) were isolated from the fruits of Cleistanthus eberhartii (Phyllanthaceae), together with six known aryltetralin lignans, cleistantoxin (6), picroburseranin (7), neocleistantoxin (8), 7-hydroxypicropolygamain (9), cleisindoside D (10), and cleisindoside A (11). Their structures and relative configurations were established by analysis of HRESIMS and NMR data, and quantum chemical calculations of JH,H coupling constants. The absolute configurations of 1-5 were determined by analysis of their experimental CD spectra and comparison with calculated electronic circular dichroism (ECD) spectra. All compounds (1-11) were evaluated for their cytotoxicity against KB, MCF-7, HepG-2, and Lu-1 human cancer cell lines. Among the tested compounds, compounds 6 and 7 showed strong activity against KB, MCF7, HepG2 and Lu-1 cell lines with IC50 values in the range of 0.02-0.62 µM. Compound 1 showed activity against three cancer cell lines KB, HepG2, and Lu-1 with IC50 values of 6.98, 7.61 and 11.75 µM, respectively. Compound 2 exhibited a selective inhibition with moderate cytotoxicity against Lu-1 with IC50 value of 15.30 µM. Compounds 4, 5 and 9 showed moderate activity against the three cancer cell lines with IC50 values in the range of 8.73-19.70 µM.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Lignanas , Malpighiales , Humanos , Linhagem Celular Tumoral , Frutas/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Estrutura Molecular , Lignanas/farmacologia , Lignanas/química
3.
Fitoterapia ; 173: 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042506

RESUMO

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 µM), 2 (69.07 ± 2.01 at 12.5 µM), 3 (80.38 ± 2.1 at 12.5 µM), 4 (62.33 ± 1.95 at 25 µM),5 (58.67 ± 1.85 at 50 µM) and 7 (66.07 ± 2.03 at 12.5 µM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 µM) than EGCG (50 µM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.


Assuntos
Limoninas , Meliaceae , Fármacos Neuroprotetores , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Peróxido de Hidrogênio , Limoninas/farmacologia , Limoninas/química , Meliaceae/química
4.
Nat Prod Res ; : 1-5, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950746

RESUMO

Two new flavonoids, 4',5,7-trihydroxy-5'-methoxy-6,8-dimethylisoflavone (1) and 2',5',7-trihydroxy-5-methoxy-6,8-dimethylflavanone (2) together with the known flavonoids 4´,5,7-trihydroxy-3´-methoxy-6.8-dimethylflavone (3), epigallocatechin (4), 4´-O-methylepicatechin (5) and quercetin (6) were isolated from the roots of Byttneria aspera. The structures of these compounds were determined by means of spectroscopic methods. Compounds 1-6 were submitted to cytotoxic activity assays against three cancer cell lines including KB, MCF7 and A549, as well as their antimicrobial activity against a panel of clinically significant microorganisms. Compound 6 showed moderate cytotoxic activity with IC50 values of 12.7, 56.9 and 17.5 µM against KB, MCF7 and A549. Interestingly, the new compounds 1 and 2 exhibits antimicrobial activity, with compound 1 displaying selective antifungal activity against Candida albicans giving an MIC value of 128 µg/mL, compared to cyclohexamide with 32 µg/mL, while compound 2 shows potent inhibition of the Gram-positive bacterium Enterococcus faecalis displaying an MIC of 64 µg/mL, compared to streptomycin with 256 µg/mL.

5.
J Med Chem ; 66(20): 14208-14220, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37795600

RESUMO

Schweinfurthins (SWs) are naturally occurring prenylated stilbenes with promising anticancer properties. They act through a novel mechanism of action similar to that of other families of natural compounds. Their known target, oxysterol-binding protein (OSBP), plays a crucial role in controlling the intracellular distribution of cholesterol. We synthesized 15 analogues of SWs and demonstrated for the first time that their cytotoxicity as well as that of natural derivatives correlates with their affinity for OSBP. Through this extensive SAR study, we selected one synthetic analogue obtained in one step from SW-G. Using its fluorescence properties, we showed that this compound recapitulates the effect of natural SW-G in cells and confirmed that it leads to cell death via the same mechanism. Finally, after pilot PK experiments, we provided the first evidence of its in vivo efficacy in combination with temozolomide in a patient-derived glioblastoma xenograft model.


Assuntos
Oxisteróis , Receptores de Esteroides , Humanos , Receptores de Esteroides/metabolismo , Colesterol/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445877

RESUMO

Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.


Assuntos
Alcaloides , Benzilisoquinolinas , Lauraceae , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lauraceae/química , Acetilcolinesterase/metabolismo
7.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513285

RESUMO

Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (1-3), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses.


Assuntos
COVID-19 , Clausena , Humanos , SARS-CoV-2 , Clausena/química , Pandemias , Antivirais/farmacologia , Folhas de Planta , Lipídeos
8.
Front Cell Dev Biol ; 11: 1129009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968208

RESUMO

ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.

9.
Z Naturforsch C J Biosci ; 78(7-8): 271-274, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36793235

RESUMO

The structure and complete NMR assignments of aspidoreticulofractine, an aspidofractinine N-oxide, are reported. Its structure was elucidated based on a combination of spectroscopic techniques including 1D and 2D NMR, high-resolution mass spectrometry, and electronic circular dichroism.


Assuntos
Apocynaceae , Monoterpenos , Estrutura Molecular , Alcaloides Indólicos/química , Espectroscopia de Ressonância Magnética , Apocynaceae/química
10.
Int J Pharm ; 630: 122433, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36436745

RESUMO

MCL-1, an anti-apoptotic member of the BCL-2 protein family, is overexpressed in many types of cancer and contributes to chemotherapy resistance. The drimane derivative NA1-115-7 is a natural compound isolated from Zygogynum pancheri that can be considered as a very promising lead for treating MCL-1-dependent hematological malignancies. As this drug suffers from low stability in acidic conditions and poor aqueous solubility, we evaluated the potential oral use of NA1-115-7 by encapsulating it in lipid nanoemulsions (NA-NEs) prepared by spontaneous emulsification. NA-NEs showed a particle size of 41.9 ± 2.2 nm, PDI of 0.131 ± 0.016, zeta potential of -5.8 ± 3.4 mV, encapsulation efficiency of approximately 100 % at a concentration of 24 mM. The stability of NA-1-115-7 was sixfold higher than that of the unencapsulated drug in simulated gastric fluid. NA-NEs significantly restored apoptosis and halved the effective doses of NA1-115-7 on BL2, a Burkitt lymphoma cell line, without toxicity in normal cells. Such a drug-delivery system appears to be particularly interesting for the oral administration of NA1-115-7, as it improves its solubility and stability, as well as efficacy, by reducing the therapeutic dose, making it possible to further consider in-vivo studies of this promising drug in BL2 xenografted mice.


Assuntos
Antineoplásicos , Transtornos Linfoproliferativos , Animais , Camundongos , Administração Oral , Antineoplásicos/farmacologia , Emulsões , Proteína de Sequência 1 de Leucemia de Células Mieloides , Tamanho da Partícula , Nanoestruturas
11.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431992

RESUMO

Quinoline derivatives and especially quinolones are considered as privileged structures in medicinal chemistry and are often associated with various biological properties. We recently isolated a series of original monoterpenyl quinolones from the bark of Codiaeum peltatum. As this extract was found to have a significant inhibitory activity against a Leishmania species, we decided to study the anti-leishmanial potential of this type of compound. Leishmaniasis is a serious health problem affecting more than 12 million people in the world. Available drugs cause harmful side effects and resistance for some of them. With the aim of finding anti-leishmanial compounds, we developed a synthetic strategy to access natural quinolones and analogues derived from zanthosimuline. We showed the versatility of this natural compound toward cyclization conditions, leading to various polycyclic quinolone-derived structures. The natural and synthetic compounds were evaluated against amastigote forms of Leishmania infantum. The results obtained confirmed the interest of this family of natural compounds but also revealed promising activities for some intermediates deriving from zanthosimuline. Following the same synthetic strategy, we then prepared 14 new analogues. In this work, we identified two promising molecules with good activities against intramacrophage L. infantum amastigotes without any cytotoxicity. We also showed that slight changes in amide functional groups affect drastically their anti-parasitic activity.


Assuntos
Antiprotozoários , Leishmania infantum , Quinolonas , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Leishmania infantum/efeitos dos fármacos , Quinolonas/farmacologia
12.
Biomed Pharmacother ; 154: 113546, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988426

RESUMO

The overexpression of antiapoptotic members (BCL-2, BCL-xL, MCL-1, etc.) of the BCL-2 family contributes to tumor development and resistance to chemotherapy or radiotherapy. Synthetic inhibitors targeting these proteins have been developed, and some hematological malignancies are now widely treated with a BCL-2 inhibitor (venetoclax). However, acquired resistance to venetoclax or chemotherapy drugs due to an upregulation of MCL-1 has been observed, rendering MCL-1 an attractive new target for treatment. Six MCL-1 inhibitors (S64315, AZD-5991, AMG-176, AMG-397, ABBV-467 and PRT1419) have been evaluated in clinical trials since 2016, but some were affected by safety issues and none are currently used clinically. There is, therefore, still a need for alternative molecules. We previously described two drimane derivatives as the first covalent BH3 mimetics targeting MCL-1. Here, we described the characterization and biological efficacy of one of these compounds (NA1-115-7), isolated from Zygogynum pancheri, a plant belonging to the Winteraceae family. NA1-115-7 specifically induced the apoptosis of MCL-1-dependent tumor cells, with two hours of treatment sufficient to trigger cell death. The treatment of lymphoma cells with NA1-115-7 stabilized MCL-1, disrupted its interactions with BAK, and rapidly induced apoptosis through a BAK- and BAX-mediated process. Importantly, a similar treatment with NA1-115-7 was not toxic to erythrocytes, peripheral blood mononuclear cells, platelets, or cardiomyocytes. These results highlight the potential of natural products for use as specific BH3 mimetics non-toxic to normal cells, and they suggest that NA1-115-7 may be a promising tool for use in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Antineoplásicos/farmacologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Leucócitos Mononucleares/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas , Winteraceae/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo
13.
Nat Prod Res ; 36(19): 5074-5080, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33939580

RESUMO

From the ethyl acetate extract (EtOAc) of the Vietnamese Garcinia mckeaniana leaves, a new flavone 8-C-glycoside 2'',6''-di-O-acetylvitexin (1), together with six known analogs 2-7 were isolated. Their structures were determined by spectral methods and compared with literature data. In α-glucosidase inhibitory assay, the EtOAc extract and its flavone and biflavone derivatives possessed the significant IC50 range of 9.17-97.53 µM, as compared with that of the positive control acarbose (249 µM). Flavones and biflavones showed are better than flavone glycosides in both α-glucosidase and acetylcholinesterase inhibitory activities[Formula: see text].


Assuntos
Flavonas , Garcinia , Acarbose , Acetilcolinesterase , Flavonas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Garcinia/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Glucosidases
14.
Nat Prod Res ; 36(6): 1616-1620, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33615920

RESUMO

New propene derivative 1-(3',4'-methylenedioxyphenyl)-2-(2''-hydroxy-5-(3'''-hydroxypropyl)-3''-methoxyphenyl)prop-2-en-1-one (1), along with three known triterpenoids ursolic acid (2), pomolic acid (3), and maslinic acid (4) were isolated from the leaves of Styrax annamensis species. All structures were assigned by spectroscopic analysis. Compound 1 showed potent cytotoxicity against four cancer cell lines (KB, HepG2, Lu, and MCF7) with the IC50 values of 3.19, 2.87, 2.33, and 2.44 µM, respectively.


Assuntos
Styrax , Triterpenos , Estrutura Molecular , Folhas de Planta/química , Styrax/química , Triterpenos/química
15.
Fitoterapia ; 155: 105034, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536533

RESUMO

Three previously undescribed benzopyranyl sesquiterpenes gracilipins BD (1-3) and two flavonoids 5,4'-dihydroxy-6-(2-hydroxybenzyl)-3,7,3'-trimethoxyflavone (4), and 5,4'-dihydroxy-8-(2-hydroxybenzyl)-3,7-dimethoxyflavone (5) were isolated from the leaves of Goniothalamus gracilipes (Annonaceae). Their structures were determined by analyses of MS and 2D NMR data. The absolute configurations of 1 were established by analysis of X-ray diffraction data. Cytotoxic evaluation of the compounds 1-5 against four cancer cell lines (KB, LU-1, HepG-2 and MCF-7) indicated that compound 5 had inhibitory activity against HepG-2 cell line with IC50 value of 16.7 µM. All new compounds (1-5) were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compound 2 showed significant antimicrobial effect on Staphylococus aureus with MIC value of 32 µg/mL.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Flavonoides/farmacologia , Goniothalamus/química , Sesquiterpenos/farmacologia , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Flavonoides/isolamento & purificação , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Sesquiterpenos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Vietnã
16.
Chem Biodivers ; 18(11): e2100396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529335

RESUMO

A new racemic xanthone, garmckeanin A (1), and eight known analogs 2-9 were isolated from the ethyl acetate (AcOEt) extract of the Vietnamese Garcinia mckeaniana leaves. Their structures were determined by MS and NMR spectral analyses and compared with the literature. The AcOEt extract showed good cytotoxicity against cancer cell lines KB, Lu, Hep-G2 and MCF7, with IC50 values of 5.40-8.76 µg/mL, and it also possessed α-glucosidase inhibitory activity, with an IC50 value of 9.17 µg/mL. Garmckeanin A (1) exhibited inhibition of all cancer cell lines, with an IC50 value of 7.3-0.9 µM. Allanxanthone C (5) successfully controlled KB growth, with an IC50 value of 0.54 µM, higher than that of the positive control, ellipticine (IC50 1.22 µM). Norathyriol (8) was a promising α-glucosidase inhibitor, with an IC50 value of 0.07 µM, much higher than that of the positive control, acarbose (IC50 161.0 µM). The interactions of the potential α-glucosidase inhibitors with the C- and N-terminal domains of human intestinal α-glucosidase were also investigated by molecular docking study. The results indicated that bannaxanthone D (2), garcinone E (4), bannaxanthone E (6), and norathyriol (8) exhibit higher binding affinity to the C-terminal than to the N-terminal domain through essential residues in the active sites. In particular, compound 8 could be assumed to be the most potent mixed inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Garcinia/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Xantonas/farmacologia , alfa-Glucosidases/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Estrutura Molecular , Células Tumorais Cultivadas , Xantonas/química , Xantonas/isolamento & purificação
17.
Biomolecules ; 11(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439894

RESUMO

The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD-PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD-PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.


Assuntos
Nucleoproteínas/metabolismo , Fosfoproteínas/química , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/química , Ligação de Hidrogênio , Luz , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espalhamento de Radiação , Terpenos/química , Raios X
18.
Org Lett ; 23(15): 5964-5968, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270272

RESUMO

Melonine is a basic monoterpene indole alkaloid (MIA) skeleton from Melodinus philliraeoides that was reported in 1983. The scarcity of its spectroscopic data questioned the validity of its structure. This prompted us to reisolate this molecule and to revise its structure into an unprecedented MIA scaffold. DFT-validated biosynthetic paths to both this new core and the originally reported form are proposed. The pathway to the original structure of melonine seems to be thermodynamically feasible, and that compound may exist as a natural product.


Assuntos
Apocynaceae/química , Alcaloides Indólicos/química , Monoterpenos/química , Produtos Biológicos , Alcaloides Indólicos/síntese química , Estrutura Molecular , Monoterpenos/síntese química
19.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799883

RESUMO

Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.


Assuntos
Leishmaniose/tratamento farmacológico , Nucleotidiltransferases/antagonistas & inibidores , Resorcinóis/farmacologia , Animais , Antiprotozoários/farmacologia , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Camundongos , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Preparações Farmacêuticas , Células RAW 264.7 , Resorcinóis/síntese química , Resorcinóis/química , Bibliotecas de Moléculas Pequenas
20.
ChemMedChem ; 16(11): 1788-1797, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33665938

RESUMO

Drimane sesquiterpenoid dialdehydes are natural compounds with antiproliferative properties. Nevertheless, their mode of action has not yet been discovered. Herein, we demonstrate that various drimanes are potent inhibitors of MCL-1 and BCL-xL, two proteins of the BCL-2 family that are overexpressed in various cancers, including lymphoid malignancies. Subtle changes in their structure significantly modified their activity on the target proteins. The two most active compounds are MCL-1 selective and bind in the BH3 binding groove of the protein. Complementary studies by NMR spectroscopy and mass spectrometry analyses, but also synthesis, showed that they covalently inhibit MCL-1 though the formation of a pyrrole adduct. In addition, cytotoxic assays revealed that these two compounds show a cytotoxic selectivity for BL2, a MCL-1/BCL-xL-dependent cell line and induce apoptosis.


Assuntos
Antineoplásicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Sesquiterpenos Policíclicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sesquiterpenos Policíclicos/síntese química , Sesquiterpenos Policíclicos/química , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...